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Numerical simulation and experimental validation of heat
transfer within rotating �ows for three-dimensional

non-axisymmetric, turbulent conditions
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SUMMARY

A control volume type numerical methodology for the analysis of steady three-dimensional rotating
�ows with heat transfer, in both laminar and turbulent conditions, is implemented and experimentally
tested. Non-axisymmetric momentum and heat transfer phenomena are allowed for. Turbulent transport
is alternatively represented through three existing versions of the k–� model that were adjusted to
take into account the turbulence anisotropy promoted by rotation, streamline curvature and thermal
buoyancy. Their relative performance is evaluated by comparison of calculated local and global heat
balances with those obtained through measurements in a laboratory device. A modi�ed version of the
Lam and Bremhorst, low Reynolds number model is seen to give the best results. A preliminary analysis
focused on the �ow structure and the transfer of heat is reported. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Non-isothermal rotating �ows between parallel disks in a cylindrical geometry, with or with-
out superposition of an axial through�ow, have intrinsic fundamental relevance. They are
also encountered in many important practical applications: e.g. turbomachinery, lubrication,
oceanography, computer hardware, gas turbines. In most of the available theoretical and ex-
perimental research works devoted to this subject axisymmetric conditions are assumed to
prevail, e.g. References [1; 2]. However this simplifying hypothesis may not be realistic in
many real working conditions. Namely, non-axisymmetric e�ects can be generated through
association of thermal buoyancy with a non-vertical position of the axis of rotation or simply
because the �ow domain is de�ned by non-axisymmetric boundaries, e.g. the reading head of
a computer disk. Few works are presently available where non-axisymmetry is allowed for,
namely Long et al. [3] and Herrero et al. [4]. In all these studies the non-axisymmetry is
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Figure 1. Schematic representation of the present geometry and co-ordinate system.

exclusively promoted by the thermal buoyancy forces. Besides, in those cases where a small
axial �ow is superimposed to the �uid rotation, re-ingress conditions may occur at the outlet
section. This additional di�culty has been dealt with in few studies, e.g. References [1; 5; 6].
In most of these works the approach is experimental. Some of the authors have also used
numerical models [5] and analytical methods based on the momentum-integral equations [6],
but always with the restriction of axisymmetric conditions.
The use of a standard k–� approach to model the turbulent transport in rotating �ows

has a number of drawbacks that have been extensively reported in the literature [7]. On the
other hand, the complexity and computational e�ort required by turbulent or algebraic stress
modelling are not always worthy in terms of precision enhancement [8]. An interesting and
simple alternative is the use of k–� low Reynolds models, on the condition that turbulence
anisotropy promoted by rotation, streamline curvature and thermal buoyancy is adequately
taken into consideration.
In the present work, the well-known �nite-volume method, reinforced with some new cal-

culation procedures, is used for the analysis of steady laminar or turbulent three-dimensional
rotating �ow of an incompressible (yet thermally dilatable) Newtonian �uid with heat transfer
is presented and experimentally tested. A three-dimensional cylindrical co-ordinate system is
used, thus allowing non-axisymmetric conditions to be considered. Numerical integration of
the governing equations is performed through a control-volume type approach, where a stag-
gered grid is used for the domain discretization. This requires the calculation of the radial
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Figure 2. Relevant dimensions of the �ow domain.

velocity component on the axis of rotation, the singularity in the corresponding di�erential
equation being then numerically avoided through an original procedure. A speci�c numerical
treatment is also developed to formulate the boundary conditions at outlet sections where
�uid re-ingress occurs. Turbulent transport is represented by a k–� type approach, where three
low-Reynolds number formulations [9–11] were slightly modi�ed and alternatively used for
comparison purposes. Evaluation of the theoretical method is performed through systematic
comparisons of predicted local and global heat balances with the corresponding ones obtained
in a parallel series of measurements that were conducted on a laboratory set-up, also described
in this work, that allows the superposition of both rotation and through�ow e�ects. Satisfying
agreement is provided by the modi�ed Lam and Bremhorst model, which is thus used to
establish a number of preliminary considerations upon the �ow structure and the transport of
heat. A systematic analysis of these features will be published in the near future.
The basic con�guration of the �ow domain is shown schematically in Figures 1 and 2.

The working �uid (air) is enclosed by two parallel coaxial disks (1 and 2) and a cylindrical
shroud (3). The cavity may be oriented in any space direction. The �uid is admitted into the
domain through a radially oriented opening of rectangular cross-section and leaves it axially
through a ring like clearance between the disk 2 and the cylindrical shroud.

2. THEORETICAL MODEL

The governing transport equations of steady three-dimensional turbulent �ow are applied in
their (r; �; z) cylindrical co-ordinate form, where z is the axis of rotation (see Figure 1).
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Table I. Values of �� and S� in the general transport equation.

Transport property � �� S�

Mass 1 0 0

Momentum in r direction U �ef = � + �t −@P
@r
+ SU + BU

Momentum in � direction V �ef = � + �t −1
r
@P
@�
+ SV + BV

Momentum in z direction W �ef = � + �t −@P
@z
+ SW + BW

Thermal energy T �T=
�
Pr
+
�t
Prt

ST

Turbulent kinetic energy k �k= � +
�t
�k

Pk + Gk − Dk − Bk

Dissipation rate of k (�̃= �− Bk) �̃ ��= � +
� t
��

P� + G� − D� + E� + Y�

To describe the arbitrary orientation of the cavity, an auxiliary Cartesian co-ordinate system
(x′; y′; z′), is also used, where the angle between the vertical axis z′ and the axis of rotation is
noted �. All time-averaged equations representing conservation of a general-dependent variable
� may be cast into the following common form:

1
r
@
@r
(r�U�) +

1
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@
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where U;V;W are the mean �ow velocity components along the r, � and z directions, respec-
tively. The di�usivity �� and the source S� have di�erent expressions for each variable � as
indicated in Table I.
The possible occurrence of signi�cant temperature gradients within the �ow renders the

Boussinesq hypothesis inadequate for the present purposes [12]. Thus the �uid density �,
dynamic viscosity �, thermal conductivity �, heat capacity cp and thermal expansion coef-
�cient 	 are all taken at the local �uid temperature T , according to the relations given by
Zografos et al. [13]. In Table I, P=Pr + (23)�k stands for an e�ective pressure, where Pr is
the reduced pressure [14; 15]. The momentum SU , SV , SW , and thermal buoyancy BU , BV ,
BW source contributions (see also Figure 1) are de�ned in the following expressions, where
g=+9:81 m=s2

SU =
1
r
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Table II. Empirical constants for the low Reynolds k–� models.

Model C� C1 C2 C3 �k �� Prt

LS 0.09 1.44 1.92 1.44 1.0 1.3 0.9
LB 0.09 1.44 1.92 1.44 1.0 1.3 0.9
LD 0.09 1.44 1.92 1.44 1.0 1.3 0.9

+�
V 2
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(2c)

BU =−(�− �0)g sin � cos(�− �0) (3a)

BV = (�− �0)g sin � sin(�− �0) (3b)

BW =−(�− �0)g cos � (3c)

where �0 is the angular position of the intersection of the vertical plane containing the axes
z and z′ with the inside surface of disk 1.
The dissipation source ST is due to viscosity and turbulence e�ects. In its expression

ST =
1
cp
(��+ ��) (4)

� is the rate of dissipation of the turbulent kinetic energy k and � is the dissipation function.
For computational reasons, it is convenient to use a newly de�ned dissipation variable

�̃= � − Bk , where Bk is the value taken by � at a solid wall. This allows one to set �̃=0
as the corresponding boundary condition. Thus the Prandtl–Kolmogorov relation for turbulent
viscosity becomes

�t =C�f��
k2

�̃
(5)

The empirical constants and the damping functions to be used in the di�erent turbulence
models [Launder and Sharma (LS), Lam and Bremhorst (LB) and Lars Davidson (LD)] are
speci�ed in Tables II and III, respectively. Two-dimensionless parameters are necessary to

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:821–840



826 A. M. RAIMUNDO, L. A. OLIVEIRA AND A. R. FIGUEIREDO

Table III. Damping functions for the low Reynolds k–� models.

Model f� f1 f2

LS exp
[ −3:4
(1 + Ret=50)2

]
1.0 1− 0:3 exp(−Re2t )

LB [1− exp(−0:0165Rek)]2
(
1 +

20:5
Ret

)
1 +

(
0:05
f�

)3
1− exp(−Re2t )

LD exp
[ −3:4
(1 + Ret=50)2

]
1 +

(
0:14
f�

)3
[1− 0:27 exp(−Re2t )]
[1− exp(−Rek)]

de�ne the damping functions, namely the turbulence Reynolds number Ret and the near wall,
local turbulent Reynolds number Rek :

Ret =
�k2

��̃
and Rek =

�ynk1=2

�
(6)

where yn is the normal distance to the wall.
In Table I, the term of energy production due to turbulent stresses Pk , the dissipation term

Dk and the energy source contribution due to buoyancy Gk are modelled through the use of
the turbulent viscosity �t as follows:

Pk = �t� (7a)

Dk = ��̃=C�f��2
k2

�t
(7b)

and

Gk =	g
�t
Prt

[
−@T
@r
sin � cos(�− �0) + 1r

@T
@�
sin � sin(�− �0)− @T

@z
cos �

]
(7c)

Turbulence isotropy is admitted to hold in the basic versions of the three models used
in this work. However, signi�cant anisotropy may arise from rotation, streamline curvature
and buoyancy e�ects and thus should not be ignored in the present conditions. The starting
versions were than accordingly modi�ed, as reported below.
Stable thermal strati�cation damps vertical and ampli�es horizontal velocity �uctuations,

while the inverse e�ect is promoted by unstable strati�cation. This was approximately rep-
resented through the introduction of a new function f3 in the G� buoyancy term for the �̃
equation, to make it dependent on the local �ow velocity direction, as suggested in Refer-
ence [16]:

G� =C3f3
�̃
k
Gk (8a)

f3 = tanh(|VV|=|VH|) (8b)
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According to the free orientation of the co-ordinate system represented in Figure 1, the
absolute values of the vertical and horizontal components of velocity in Equation (11) have
the following expressions:

|VV|= |U sin � cos(�− �0)− V sin � sin(�− �0) +W cos �| (8c)

|VH|=
√
U 2 + V 2 +W 2 − |VV|2 (8d)

As was pointed out by Launder et al. [17], streamline curvature tends to damp turbulence
whenever the angular momentum increases with radius and to amplify it in the opposite case.
Following those authors, these e�ects are here accounted for through the introduction of an
empirical function fc that is used to modify the dissipation term of the �̃ equation:

D� =C2f2fc�
�̃2

k
(9a)

fc = 1− Cc k
2

�̃2
V
r2
@
@r
(rV ) (9b)

where the new constant Cc takes the value 0.2, unless there is no external peripheral wall
[(3) in Figure 1], for which case Cc = 0:0.
As suggested by Nallasamy [8], rotation has a stabilizing e�ect as it damps the energy

transfer between large- and small-scale eddies. This is represented through the inclusion of a
new empirical function fr in the source production term of the �̃ equation:

P� =C1f1fr
�̃
k
Pk (10a)

fr = 1 + 2
Cr
�

(
V
r
@V
@r

− V 2

r2

)
(10b)

The new constant Cr is equal to 0.9 whenever there is rotation and zero otherwise.
In order to compensate for the overestimation of the near wall turbulent length scales (a

drawback common to all k–� type models where the � equation is actually solved up to the
wall), Yap [18] suggested the introduction of a new source term Y� in the �̃ equation that
implicitly limits the turbulent length scales:

Y�= max

[
Cy

(
k3=2

�̃C‘yn
− 1:0

)(
k

C‘yn

)2
; 0:0

]
(11)

The values adopted for the constants in this Yap correction were those leading to the best
agreement with available laboratory measurements [15]: C‘=2:548 and Cy = 0:83.
The additional terms Bk and E� of Table I depend on the model to be considered [9–11]

and are de�ned in Table IV, through the following auxiliary terms B∗
k and E

∗
� :

B∗
k =

(
@k1=2

@r

)2
+

(
1
r
@k1=2

@�

)2
+

(
@k1=2

@z

)2
(12)
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Table IV. Extra terms and boundary conditions for the k and �̃ equations.

Boundary Boundary
Model Code Bk E� conditions (k) conditions (�̃)

Launder and Sharma LS 2�B∗
k 2

�� t
�
E∗
� kw = 0 �̃w = 0

Lam and Bremhorst LB 0 0 kw = @k=@yn = 0 @�̃=@yn = 0

Lars Davidson LD 0 0 kw = 0 @�̃=@yn = 0
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+
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The term E∗ in this latter equation involves crossed space, second-order derivatives and is
thus discarded.
At solid walls, velocity and temperature boundary conditions are set by locally imposing

Dirichlet and Neumann type conditions, respectively. The boundary conditions for k and �̃ are
showed in Table IV for the low Reynolds number models considered in this work.
For free boundaries recirculation may occur and a special numerical treatment is thus neces-

sary; besides, Equation (1) leads to a mathematical singularity at the axis of rotation (r=0),
that may be overcome through a particular numerical strategy. Both procedures will be pre-
sented in the next section. For those cases where axial symmetry holds, conditions at r=0
are simply reduced to U=0 with zero radial gradient for the other variables.
Flow inlet conditions are those corresponding to fully developed �ow in the admission duct.

When this �ow is turbulent, the �uctuating level is locally set by de�ning a turbulence inlet
intensity It; in, thus leading to

kin= 1:5I 2t; inV
2
in (14a)

and

�in =
C0:75�

‘m
k1:5in (14b)

where Vin is the inlet mean velocity and ‘m is the turbulent mixing length. For fully developed
jets like this one, Costa et al. [16] have measured local turbulence intensities between 0.02
and 0.1. Exploratory calculations [15], indicated that, for levels of It; in¡0:1, the numerical
solutions were nearly insensitive to the assumed distributions of k and � at the inlet section.
A value of It; in = 0:04 is thus assumed for the present conditions. The �uid temperature Tin
in is considered uniform in the whole inlet section.
Out�ow boundary conditions are not known a priori and may involve �ow recirculation

in some cases. This is dealt with by use of a special numerical procedure, as reported in the
next section.
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3. NUMERICAL METHOD

Numerical integration of Equation (1) for the conservation of mass (�=1), momentum
(�=U;V;W ), thermal energy (�=T ), turbulent kinetic energy (�= k) and its (modi�ed)
rate of dissipation (�= �̃) is performed through a control volume based, �nite di�erence
approach, where hybrid di�erencing is used for the di�usive and advective terms. The well-
established general procedure was extensively described, e.g. by Patankar [19]. This text is
thus exclusively focused on the particular strategies that were conceived and/or implemented
for the speci�c present purposes.
Discretization of the �ow domain has to ensure that grid re�nement is su�cient to cope

with those regions corresponding to the highest �ow gradients. Besides, for low Reynolds
turbulence models the grid nodes immediately adjacent to each wall must be located well
inside its viscous sublayer (thus meaning a dimensionless distance from the wall y+�11).
The use of a hyperbolic tangent function is particularly e�cient in de�ning an irregularly
spaced mesh that satis�es those fundamental requirements with a relatively small number of
total grid nodes, thus keeping the necessary CPU time and memory within reasonable limits.
For grid independence analysis, a test-case with rotating and mass �ow rate Reynolds

numbers of Re� =144:0× 103 and Rem =284:32, respectively, was chosen (both these pa-
rameters are de�ned in Section 5). Numerical tests with non-uniform grids ranging between
12× 20× 12 and 30× 46× 30 nodes, along the r, � and z directions, respectively, showed that
a grid of 20× 30× 20 nodes yielded a nearly grid-independent solution for this test-case. Thus,
an irregular distribution of 20× 30× 20 nodes was adopted for the domain discretization.
Scalar and back staggered control volumes are speci�ed along the r, � and z directions

through the indices I; J; K , respectively. The �ow domain includes all scalar nodes with
(26I6NI −1), (26J6NJ −1), (26K6NK −1). The scalar �ctitious nodes 1, NI , NJ , NK
are placed outside the �ow domain. For a typical control volume surrounding a node P, the
algebraic equivalent of Equation (1) is

a�P�P = a
�
N�N + a

�
S�S + a

�
E�E + a

�
W�W + a

�
T�T + a

�
B�B + b

�
P (15)

where a� are weighting factors, the indices N, S, E, W, T, B stand for North, South, East,
West, Top and Bottom, respectively, and b�P is an independent additional term resulting from
linearization of the source term S� in Equation (1). Temperature, pressure, turbulent kinetic
energy and its rate of dissipation are calculated at the main grid nodes while staggered grids
(located at the main control volume faces) are used for the three velocity components. The
SIMPLEC segregated algorithm of van Doormaal and Raithby [20] is adopted for the whole
numerical procedure, the solution for the individual � equation sets being obtained through
a line-by-line iteration procedure based on the well known three-diagonal matrix algorithm
(TDMA). Convergence is satis�ed when the sum of all nodal normalized residuals is less than
10−6 for the mass balance and less than 10−5 for the remaining equations. For an irregularly
spaced mesh of (20× 30× 20) nodes along the r, � and z directions, respectively, this is
typically achieved after 14 000 iterations, corresponding to about 4 h CPU time on a standard
PC with a 450 MHz Pentium II processor.
Even though most of the adopted methodologies are now well established, a number of

special procedures proved to be crucial for the present needs. A summary of those procedures,
for which additional details may be found in Raimundo [15], is now presented.
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Outlet �ow boundaries—When the superimposed through�ow is not large enough, �uid
re-ingress may occur at the outlet boundary (see Figure 2), thus rendering zero gradient type
boundary conditions inappropriate. This is overcome by locally imposing mass and thermal
energy conservation in each control volume of the boundary. As an example, the axial velocity
component at the �ctitious node NK outside the East boundary is determined through a mass
balance applied to the corresponding scalar control volume localized at node NK − 1, where
NK is the number of grid nodes in the axial (z) direction. Once this procedure is completed
for all outlet boundary nodes, a �nal multiplying correction is applied to ensure global mass
and energy conservation.
Mathematical singularity at r=0—As a consequence of the back staggered grid adopted

in the present formulation, the radial velocity component U of the �rst real node in the
radial direction (I=2) is localized at r=0, thus leading to a singularity in the corresponding
Equation (1). This problem is simply overcome by displacing the node I=2 of the staggered
U grid from r=0 to a position midway between the z-axis and the node surface I=2 of the
scalar grid (local semi-staggered grid).
Line-by-line iteration procedure for the � direction (‘Circular’ TDMA)—Resolution of

Equation (23) in the � direction cannot be adequately performed through the use of a con-
ventional TDMA procedure. In fact, for �xed I and K , the �ctitious nodes 1 and NJ coincide
with the real nodes NJ−1 and 2, respectively. This di�culty was overcome through the intro-
duction of a modi�ed algorithm, called ‘Circular’ TDMA (CTDMA), that is fully described
in Raimundo [15].
Reliable numerical and=or experimental data to be used as a reference for comparison with

the present numerical predictions is still lacking in the available literature. Validation of this
theoretical model was thus performed for a number of test cases through comparison of
calculated results with the corresponding measurements obtained in the experimental rig that
is described in the next section.

4. EXPERIMENTAL APPARATUS

The experimental set-up is essentially made of the components schematically shown in
Figure 2, with �=0: a cylindrical cavity with a horizontal aluminium hot disk (1) at the
bottom, a Plexiglas rotating disk (2) at the top, a �xed cylindrical Plexiglas shroud (3)
and a horizontal duct of rectangular cross-section introducing a radially directed jet of air
into the cavity. As sketched in Figure 2, the �ow domain dimensions are H =202 mm,
R=R1= 204 mm, R2 = 200 mm and the rectangular duct has an internal cross-section of
50 mm height and 20 mm width. Additional details may be found in Reference [15].
The �xed disk is heated by means of a sandwich-type construction, schematically presented

in Figure 3(b). The sandwich is an assembly of �ve disks with similar dimensions: two
aluminium disks at the top (1) and bottom (7) extremes and three insulation bakelite disks
(4)–(6) in between. Disk (1) is equipped with thermocouples and heated by means of an
independent, calibrated electrical resistance (9) of R9 = 208:83 �. Disk (7) has a role of
thermal compensation. It is heated by an electrical resistance (10) of R10 = 200:41 �. During
the construction of disk (1), a circular sector was selected and cut o�. This sector was then
equipped with an independent resistance (8) of R8 = 2:70 � together with several thermo-
couples and one 0:5mm thick insulating plastic trip on each side. Finally, it was reinserted at
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Figure 3. Diagram of hot disk at the bottom of cavity: (a) disk upper face with the circular sector and
thermocouples position and (b) sandwich mounted heating system.

its original position, resulting a 12:5◦ circular sector, as represented in Figure 3(a). Before the
�nal assembling of the sandwich system, a plastic foam ring was inserted in the gap between
its lateral surface and the �xed cylindrical Plexiglas shroud in order to prevent air leakage
and minimize radial conduction heat losses, but still allowing the whole sandwich structure
to rotate about its vertical axis. Thus, the angular position � of the circular sector can be
arbitrarily chosen.
By acting upon the power supply of the electric resistances (8)–(10) it is possible to reach

thermal equilibrium conditions in the whole sandwich system, where disk (1) and its circular
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sector are at the same temperature and a virtual adiabatic horizontal surface results at mid
height of disk (5). The power supplied to both the heating resistances (8) and (9) then allowed
the calculation of the global heat transferred to the �ow by convection (Q̇H) and to the other
walls by radiation. Similarly, the power supplied to the circular sector was a direct measure of
the heat transferred from its surface to the �ow and the surroundings. Once the measured data
were corrected for heat losses, the values obtained for each angular position � of the circular
sector can be used to evaluate a ‘local’ heat transfer �ux (Q̇CS) that is representative of that
�. Integration of the local values obtained for a complete revolution (06�62
) thus lead to a
global value that can be compared with the global convection heat transfer mentioned above.
By the application of this methodology to four independent test-cases, agreement was found
within −5:2% in the worst case and 2.8% in the best. For each test-case, reproducibility was
found within ±2%.
The rotating disk (2) in Figure 2 is driven by an electric motor and its velocity is controlled

through an electric frequency changer. The angular velocity can be chosen in the interval
40–10 000 rpm. It is measured by the use of a digital tachometer.
The horizontal air jet introduced into the cavity is generated by a fan. Its mass �ow rate

(ṁ) is monitored by a calibrated ori�ce plate.
Temperatures are measured by a set of 90 thermocouples, some of which are linked in

parallel, thus giving a set of 64 independent temperature sensors. The readings are performed
with the aid of a data acquisition system made of a personal computer and a Metrabyte
DAS-16 card with four expansion cards EXP-16.
Calibration of the devices and acquisition equipment used to measure temperature, angular

velocity and inlet �ow rate was previously performed.
The thermal energy �ux at the inlet (Q̇in) and outlet (Q̇out) sections can be obtained through

the measured values of the through�ow mass �ux (ṁ) and mean �uid temperatures at those
sections.

5. RESULTS AND DISCUSSION

The �rst aim of the tests reported in this section is to experimentally validate the theoretical
method and to establish a comparative analysis on the relative performance of the three
versions alternatively used to model the turbulent transport of momentum and energy within
the �ow. The best performing version resulting from these tests will be used in a systematic
parametric study to be presented in the near future.
Dimensionless variables (hereafter denoted by a star) and parameters are introduced through

the adoption of H , �R and �Tmax =Tmax − Tmin as references for length, velocity and tem-
perature, respectively. As sketched in Figure 2, H and R (=R1) are the axial and radial
dimensions of the �ow domain and � is the absolute angular velocity of the rotating disk.
�Tmax stands for the di�erence between the maximum (Tmax =TH) and minimum (Tmin =Tin)
temperature values occurring within the domain, where TH is the bottom, hot �xed disk
average temperature and Tin is the inlet air �ow temperature.
The dimensionless cavity geometrical dimensions can be de�ned as

R∗=
R
H
; Dh∗in =

Dhin
H
; Dh∗out =

Dhout
H

(16)
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where Dhin and Dhout are the equivalent hydraulic diameters of inlet and outlet sections,
respectively.
Flow rotation and axial mass �ow rate are characterized by two distinct Reynolds numbers,

de�ned in the same order as Re� and Rem:

Re� =
��RH
�

(17a)

Rem =
ṁ
�H

(17b)

The dimensionless local velocity vector (Ṽ∗) and the non-dimensional temperature values
(T ∗) are speci�ed as

Ṽ∗=
Ṽ
�R

(18a)

and

T ∗=
T − Tmin
�Tmax

(18b)

respectively.
Thermal buoyancy e�ects are estimated through the following Grashof number (Gr)

de�nition:

Gr=
g	�2H 3�Tmax

�2
(19)

where g=+9:81 m=s2, 	 is the volumetric thermal expansion coe�cient and � represents de
�uid density.
Heat transfer between solid wall and �uid is characterized by the Nusselt number Nu:

Nu=
Q̇H

A��Tmax
(20)

where Q̇ is the total heat transfer �ux at the wall and A stands for the corresponding area
through which heat is transferred by convection. Global Nusselt numbers for the hot disk and
its circular sector are thus noted by NuH and NuCS, respectively.
Finally, the dimensionless thermal energy �ux associated to the through�ow mass �ux ṁ

at the outlet section (Q̇∗
out) can be speci�ed by relating the thermal energy �ux in this section

(Q̇out), the corresponding value at the inlet (Q̇in) and the maximum heat that can be removed
by the through�ow (Q̇max= ṁcp�Tmax):

Q̇∗
out =

Q̇out − Q̇in
Q̇max

=
Tout − Tin
�Tmax

=T ∗
out (21)

where Tout is the �uid mean temperature at the outlet section. The dimensionless thermal
energy �ux at the outlet section (Q̇∗

out) and the non-dimensional outlet �uid temperature (T
∗
out)

are actually the same parameter.
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The �uid used for testing is air (Pr=0:704); the hydraulic diameter of the inlet and outlet
sections, as well as the domain aspect ratio and the Grashof number are �xed and equal
to Dh∗in = 0:14, Dh

∗
out = 0:04, R

∗=1:01 and Gr=3:097× 107, respectively. The e�ect of vari-
ation of these parameters will be analysed in a future work. Rotating and mass �ow rate
Reynolds numbers are allowed to vary with the limits: 72:6× 1036Re�6867:7× 103 and
0:06Rem61081:53.
The experimental set-up described in Section 4 allows the easy monitoring of the global

convection heat transfer from both the whole hot, �xed disk (Q̇H) and its circular sector Q̇CS
(for di�erent angular positions of the latter), as well as the inlet (Q̇in) and outlet (Q̇out) ther-
mal energy �uxes. Uncertainty evaluation was performed for all the measurements involved
with a 95% con�dence level, according to a modi�ed Kline and McClintock method (de-
scribed in Reference [15]). The relative uncertainties associated to the heat �ux from the
hot disk (Q̇H) and its circular sector (Q̇CS) range in the intervals 3.4–12.8% and 3.1–12.8%,
respectively. For the di�erence between the thermal energy �uxes at outlet and inlet sec-
tions (Q̇out − Q̇in) the relative uncertainty is 0% when no through�ow exists (ṁ=0) and
is equal to 7.3% otherwise. Thus, the corresponding values calculated for Nusselt numbers
of the whole hot disk (NuH) and of its circular sector (NuCS) range in the intervals 5.9–
14.9% and 5.8–17.3%, respectively. For the dimensionless outlet thermal energy �ux (Q̇∗

out)
the relative uncertainty is 0% when no through�ow exists and range between 0.5 and 10.1%
otherwise.
Validation of the numerical procedure is thus mainly focused in the Nusselt numbers of

the whole hot �xed disk (NuH), its circular sector (NuCS) and dimensionless outlet thermal
energy �ux (Q̇∗

out), by establishing the percentage di�erence ∇�=[(�num−�exp)=�exp]× 100%
between numerical predictions for a general variable � with the corresponding experimental
measurements.
For the test case referred to in Section 3 (Re� =144:0× 103, Rem =284:32), percentage dif-

ferences between predicted and measured values of the hot disk Nusselt number and the outlet
dimensionless thermal energy �ux were found to be ∇NuH =−4:3% and ∇Q̇∗

out =−9:1%, re-
spectively. These values were found acceptable for the present purpose.
Turbulent �ow conditions characterized by Re� =722:9× 103 and Rem =1081:53 were taken

as reference to analyse the relative performance of the three low Reynolds number models
[Launder and Sharma (LS), Lam and Bremhorst (LB) and Lars Davidson (LD)]. The results
of this analysis are summarized in Table V, together with the e�ect of the modi�cations that
were reported in Section 2: variable buoyancy term in the �̃ equation (f3) and Yap correction
(Yap). Also represented as ‘Laminar’ are the corresponding predictions where the turbulent
transport is simply ignored.
The LS, LB and LD models lead to predictions for global �ow structure and heat �uxes

that are qualitatively alike. A similar behaviour is also observed in terms of numerical sta-
bility, number of iterations for convergence and in�uence of modi�cations f3 and Yap.
All of them predict wall heat �uxes and Q̇∗

out values that are greater than the measured
ones. The f3 correction has only a slight e�ect on both the convergence speed and im-
provement of the numerical predictions. On the other side, the Yap correction slows down
convergence (almost but not exactly reached after 20 000 iterations), and its e�ect on re-
sults depends upon which model is being used. Namely, predictions are slightly
worsened with LS, somewhat enhanced with LD and substantially improved
with LB.
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Table V. Validation of numerical predictions obtained with di�erent turbulence models through com-
parison with experimental measurements for Re� =722:9× 103, Rem =1081:53 and Gr=3:097× 107.

Model + corrections Iterations NuH ∇NuH (%) Q̇∗
out ∇Q̇∗

out (%)

Experimental — 146.79 — 0.444 —

Laminar 7 960 102.11 −30:4 0.241 −45:8
Launder and Sharma (LS) 15 417 172.68 17.6 0.573 29.0
LS + f3 15 427 172.68 17.6 0.573 29.0
LS + f3 + Yap 20 000 173.88 18.5 0.579 30.2

Lars Davidson (LD) 13 503 182.48 24.3 0.619 39.4
LD + f3 13 359 182.48 24.3 0.619 39.3
LD + f3 + Yap 20 000 178.50 21.6 0.600 35.1

Lam and Bremhorst (LB) 10 857 185.45 26.3 0.633 42.5
LB + f3 11 065 185.45 26.3 0.633 42.5
LB + f3 + Yap 20 000 163.00 11.0 0.527 18.7
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Figure 4. Comparison between experiments and predictions. Variation of the average Nusselt number
of the hot disk circular sector with its angular orientation for Re� =722:9× 103 and Rem =1081:53.

Figure 4 shows a comparison between experiments and the best performing predictions
obtained with each turbulence model for the variation of the average hot disk circular sector
Nusselt number (NuCS) with its angular orientation, for the situation where the inlet jet �ow
is located at �=180◦ and the upper disk is rotating in the positive sense. The existence
and angular location of a maximum value for NuCS is correctly detected by the numerical
predictions. However its value is overestimated by all model combinations. The peak values
observed for NuCS (Figure 4) when �¿180◦ are a consequence of the de�ection e�ect due
to superposition of rotation to the jet type inlet boundary. The resulting �ow structure is
shown in Figure 5, where two plots of the predicted �ow�eld are presented, one for dimen-
sionless velocity vectors in a vertical plane (Figure 5(a)) and the other for non-dimensional
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�

(b) :  z* = 0.066

(a) � = 180º � = 0º

V* = 0.1

Figure 5. Computed �ow�eld for Re� =722:9× 103 and Rem =1081:53, with LB + f3 + Yap model
combination: (a) dimensionless velocity vectors in a vertical plane and (b) non-dimensional temperature

contours in a horizontal plane crossing the inlet jet at mid height.

temperature isolines in a horizontal plane located at z∗=0:066. Both planes contain illustrative
cross-sections of the inlet air�ow jet.
After a series of systematic comparisons like those in Figure 4 and in Table V, the following

performance ranking was established in decreasing order: LB+f3 +Yap, LS+f3 and LD+
f3 + Yap. The combination LB + f3 + Yap was thus adopted in the subsequent numerical
predictions, for which additional validation is established in Table VI. Here the deviations
∇ from experiments are quanti�ed for calculations on the global Nusselt number of the hot
disk NuH and the outlet heat �ux Q̇∗

out. The comparison is made for a number of selected
values of the parameters Re� and Rem. The in�uence of those parameters upon ∇ is seen
to be important. In order to quantify the turbulence level of the �ow, the numerical values
obtained for the averaged dimensionless turbulent viscosity ( 	�∗t ) are presented in the same
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Table VI. Global comparison between experimental (Exp.) and numerical (Num.) data (LB+f3+Yap).

Dimensionless parameters Bottom disk Outlet �ow

Rotation Mass �ow rate Exp. Num. (%) Exp. Num. (%) Mean turbulent
viscosity

Re� Rem NuH ∇NuH Q̇∗
out ∇Q̇∗

out 	�∗t

0.0 0.0 16.72 −6:9 0.0 0.0
72:6× 103 0.0 36.63 13.1 0.0 0.0
144:0× 103 0.0 44.42 24.1 0.0 0.0
216:7× 103 0.0 56.51 22.5 0.0 0.003
289:0× 103 0.0 67.37 19.0 0.0 0.32
723:1× 103 0.0 105.72 23.7 0.0 0.99
867:7× 103 0.0 108.10 33.2 0.0 1.18

0.0 284.32 34.95 −14:2 0.242 −23:7 0.0
72:6× 103 284.32 38.67 −9:2 0.243 −14:8 0.0
144:0× 103 284.32 51.71 −4:3 0.285 −9:1 0.0
216:7× 103 284.32 62.49 −5:3 0.312 −7:3 0.001
289:1× 103 284.32 71.16 −1:2 0.337 6.1 6.26
723:1× 103 284.32 122.32 4.1 0.500 14.0 1484.9
867:1× 103 284.32 123.73 6.4 0.550 18.8 4383.0

0.0 721.95 60.23 −29:0 0.242 −40:2 0.04
72:6× 103 721.95 56.01 −22:1 0.238 −34:0 0.09
144:0× 103 721.95 49.43 −21:0 0.230 −28:6 0.11
216:4× 103 721.95 62.17 −14:2 0.250 −19:8 1.35
289:1× 103 721.95 71.59 25.6 0.273 27.5 6.26
722:9× 103 721.95 136.56 13.0 0.487 29.2 1491.7
866:6× 103 721.95 146.26 11.3 0.536 31.7 4496.7

0.0 1081.53 68.05 −37:5 0.254 −51:7 0.35
72:6× 103 1081.53 75.02 −29:9 0.246 −43:8 0.51
143:7× 103 1081.53 72.65 −27:6 0.237 −40:2 2.27
216:4× 103 1081.53 60.63 46.0 0.218 66.4 3.39
289:4× 103 1081.53 67.15 34.3 0.234 52.2 6.13
722:9× 103 1081.53 146.79 11.0 0.444 18.7 1216.2
866:6× 103 1081.53 160.01 22.3 0.505 43.1 4563.8

table, according to the following de�nitions:

�∗t =
�t
�

(22a)

	�∗t =
(

n∑
i=1
�∗t Vol i

)/
Vol (22b)

where n is the number of real nodes in the calculation domain, Vol i represents the volume
associated with each node and Vol stands for the inside volume of the entire cavity.
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As shown in Table VI, in the absence of through�ow, ∇NuH values are positive and tend to
increase with increasing Re�. A di�erent behaviour is observed when rotation and axial �ow
are both present. The extreme positive and negative ∇ values pointed out in Table VI are
above the experimental uncertainty. Deviations of the present numerical predictions may be
attributed to di�erent factors, namely: the use of turbulence models improved with corrections
that were not speci�cally calibrated for the present conditions; the well-known di�culty in
reproducing in laboratory the exact boundary conditions (namely temperature distribution)
used for numerical calculations; the experimental uncertainty itself. Even though improvement
is thus still necessary, agreement between both approaches is seen to be very satisfactory in
most of the �ow conditions analysed. This means that further interesting predictions may be
obtained with con�dence by using the present numerical tool.
In fact, a systematic parametrical analysis of the �ow con�guration and heat transfer phe-

nomena, using the selected LB + f3 + Yap combination to model the turbulent transport is
now being carried out and will be reported in a future work.

6. CONCLUSIONS

A numerical procedure of the control-volume type aimed at modelling steady three-dimensional
rotating �ows with heat transfer, in both laminar and turbulent conditions was developed and
successfully tested by comparison with measurements obtained in a laboratory rig. The theoret-
ical approach formerly included three alternative versions of low Reynolds number, k–� type
models that were then adjusted to include the e�ects of rotation, thermal buoyancy and stream-
line curvature, as well as the turbulence length-scale limitation known as ‘Yap correction’.
After validation, they were classi�ed in terms of relative performance. The best performing
combination of this ranking (noted ‘LB+f3 +Yap’) was then selected and thoroughly tested
for di�erent �ow conditions that were characterized in terms of the rotating and mass �ow rate
Reynolds numbers. With the exception of a number of particular situations, very satisfactory
agreement was observed between numerical predictions and the corresponding measurements,
thus providing the basis for a further systematic study on the dependence of �ow structure
and heat transport upon the most relevant dynamic and thermal �ow parameters.

APPENDIX A: NOMENCLATURE

A Area (m2)
BU ; BV ; BW buoyancy source terms in U;V;W equations (Equation (3))
Bk; E� extra-terms in the k and � equations (Table IV)
C1; C2; C3; C�; �k ; �� constants of turbulence model (Table II)
cp heat capacity at constant pressure (J=(kg K))
Dhin; Dhout equivalent hydraulic diameters of inlet and outlet sections (m)
Dk;D� dissipation sources of k and � equations (Equations (7), (9))
f�; f1; f2 damping functions of turbulence model (Table III)
f3; fc; fr empirical turbulence functions (Equations (8), (9), (10))
Gk;G� buoyancy sources of k and � equations (Equations (7), (8))
Gr Grashof number (Equation (19))
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H test cavity axial dimension (cf. Figure 2) (m)
k turbulence kinetic energy (m2=s2)
ṁ mass �ow rate (kg=s)
Nu Nusselt number (Equation (20))
P; Pr e�ective and reduced pressures (N=m2)
Pr; Prt molecular and turbulent Prandtl numbers
Pk; P� production sources of k and � equations (Equations (7), (10))
Q̇ total heat transfer �ux (W)
R test cavity radial dimension (cf. Figure 2) (m)
R∗ domain aspect ratio (=R=H)
r; �; z cylindrical co-ordinate system (cf. Figure 1)
Re�; Rem rotating and mass �ow rate Reynolds numbers (Equations (17))
Rek ; Ret turbulence Reynolds numbers (Equations (6))
S�; ST source terms of � and T equations (Equation (1), (4))
SU ; SV ; SW momentum source terms in U;V;W equations (Equations (2))
T temperature (K)
U;V;W mean velocity components (m=s)
VH; VV horizontal and vertical components of velocity

(Equations (8)) (m=s)
Y� Yap turbulent correction term (Equation (11))
yn normal distance to nearest wall (m)

Greek letters
� angle between the vertical and the rotating axis (Figure 1) (rad)
	 thermal expansion coe�cient (K−1)
� di�usivity coe�cient
∇ percentage di�erence between numerical and experimental values (%)
�; �̃ dissipation rate of k (�̃= �− Bk) (m2=s3)
� thermal conductivity (W=(mK))
�; �t dynamic molecular and turbulent viscosity (Equation (5)) (N s=m2)
� �uid density (kg=m3)
� general-dependent variable
� rotating velocity of disk 2 (rad=s)

Superscripts

k; P; T; U; V;W; �; � relative to k; P; T; U; V;W; � and � equations
∗;+ dimensionless variable

Subscripts

ef e�ective
CS circular sector of hot disk
H hot disk (disk 1 of Figure 2)
in, out inlet and outlet conditions
min, max minimum and maximum values

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:821–840



840 A. M. RAIMUNDO, L. A. OLIVEIRA AND A. R. FIGUEIREDO

REFERENCES

1. Owen JM, Rogers RH. Flow and Heat Transfer in Rotating-Disc Systems, vol. 1: Rotor-Stator Systems &
vol. 2: Rotating Cavities. Wiley, Inc.: Chichester, England, vol. 1: 1989 and vol. 2: 1995.

2. Lee CH, Hyun JM. Flow of a strati�ed �uid in a cylinder with a rotating lid. International Journal of Heat
and Fluid Flow 1999; 20:26–33.

3. Long CA, Morse A, Tucker P. Measurement and computation of heat transfer in high-pressure compressor drum
geometries with axial through�ow. ASME Journal of Turbomachinery 1997; 119:51–60.

4. Herrero J, Girald F, Humphrey JAC. Non-isothermal laminar �ow and heat transfer between disks corotating in
a �xed enclosure. International Journal of Heat and Mass Transfer 1999; 42:3291–3306.

5. El-Oun ZD, Neller PH, Turner AB. Sealing of a shrouded rotor–stator system with pre-swirl coolant. ASME
Journal of Turbomachinery 1988; 110:218–228.

6. Chew JW. A theoretical study of ingress for shrouded rotating disc systems with radial out�ow. ASME Journal
of Turbomachinery 1991; 113:91–97.

7. Chen HC, Patel VC. Near-wall turbulence models for complex �ows including separation. AIAA Journal 1988;
26(6):641–648.

8. Nallasamy M. Turbulence models and their applications to the prediction of internal �ows: a review. Computers
and Fluids 1987; 15(2):151–194.

9. Launder BE, Sharma BI. Application of the energy-dissipation model of turbulence to the calculation of �ow
near a spinning disc. Letters in Heat and Mass Transfer 1974; 1:131–138.

10. Lam CKG, Bremhorst K. A modi�ed form of the k–� model for predicting wall turbulence. Journal of Fluids
Engineering 1981; 103:456–460.

11. Davidson L. Calculation of the turbulent buoyancy-driven �ow in a rectangular cavity using an e�cient solver
and two di�erent low Reynolds number k–� turbulent models. Numerical Heat Transfer Part A 1990; 18:
129–147.

12. Gray DD, Giorgini A. The validity of the Boussinesq approximation for liquids and gases. International Journal
of Heat and Mass Transfer 1976; 19:545–551.

13. Zografos AI, Martin WA, Sunderland JE. Equations of properties as a function of temperature for seven �uids.
Computer Methods in Applied Mechanics and Engineering 1987; 61:177–187.

14. Oliveira LA. Contribution to the study of axisymmetric �ow between rotating disks. Ph.D. Thesis, Faculty of
Sciences and Technology, University of Coimbra, Portugal, 1986 (in portuguese).

15. Raimundo AM. Contribution to the study of rotating �ows: heat transfer analysis in three-dimensional non-
axisymmetric conditions. Ph.D. Thesis, Faculty of Sciences and Technology, University of Coimbra, Portugal,
1998, (in portuguese).

16. Costa JJ, Oliveira LA, Blay D. Test of several versions for the k–� type turbulence modelling of internal mixed
convection �ows. International Journal of Heat and Mass Transfer 1999; 42:4391–4409.

17. Launder BE, Priddin CH, Sharma BI. The calculation of turbulent boundary layers on spinning and curved
surfaces. Journal of Fluids Engineering 1977; 99:231–239.

18. Yap C. Turbulent heat and momentum transfer in recirculating and impinging �ows. Ph.D. Thesis, Faculty of
Technology, University of Manchester, United Kingdom, 1987.

19. Patankar SV. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation: Washington DC,
USA, 1980.

20. Van Doormaal J, Raithby GD. Enhancements of the SIMPLE method for predicting incompressible �uid �ows.
Numerical Heat Transfer 1984; 7:147–163.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:821–840


